5 research outputs found

    Artificial intelligence-based non-invasive tumor segmentation, grade stratification and prognosis prediction for clear-cell renal-cell carcinoma

    Get PDF
    Due to the complicated histopathological characteristics of clear-cell renal-cell carcinoma (ccRCC), non-invasive prognosis before operative treatment is crucial in selecting the appropriate treatment. A total of 126 345 computerized tomography (CT) images from four independent patient cohorts were included for analysis in this study. We propose a V Bottleneck multi-resolution and focus-organ network (VB-MrFo-Net) using a cascade framework for deep learning analysis. The VB-MrFo-Net achieved better performance than VB-Net in tumor segmentation, with a Dice score of 0.87. The nuclear-grade prediction model performed best in the logistic regression classifier, with area under curve values from 0.782 to 0.746. Survival analysis revealed that our prediction model could significantly distinguish patients with high survival risk, with a hazard ratio (HR) of 2.49 [95% confidence interval (CI): 1.13-5.45, P = 0.023] in the General cohort. Excellent performance had also been verified in the Cancer Genome Atlas cohort, the Clinical Proteomic Tumor Analysis Consortium cohort, and the Kidney Tumor Segmentation Challenge cohort, with HRs of 2.77 (95%CI: 1.58-4.84, P = 0.0019), 3.83 (95%CI: 1.22-11.96, P = 0.029), and 2.80 (95%CI: 1.05-7.47, P = 0.025), respectively. In conclusion, we propose a novel VB-MrFo-Net for the renal tumor segmentation and automatic diagnosis of ccRCC. The risk stratification model could accurately distinguish patients with high tumor grade and high survival risk based on non-invasive CT images before surgical treatments, which could provide practical advice for deciding treatment options.</p

    Histone demethylase KDM4B contributes to advanced clear cell renal carcinoma and association with copy number variations and cell cycle progression

    No full text
    Advanced renal cell carcinoma (RCC) poses a threat to patient survival. Epigenetic remodelling is the pathogenesis of renal cancer. Histone demethylase 4B (KDM4B) is overexpressed in many cancers through various pathways. However, the role of KDM4B in clear cell renal carcinoma has not yet been elucidated. The differential expression of KDM4B was first verified by analysing public databases. The expression of KDM4B in fresh tissues and pathology slides was further analysed by western blotting and immunohistochemical staining. KDM4B overexpression and knockdown cell lines were also established. Cell Counting Kit-8 (CCK-8) assay was used to detect cell growth. Transwell assays were performed to assess cell migration. Xenografts were used to evaluate tumour growth and metastasis in vivo. Finally, KDM4B expression levels associated with copy number variation (CNV) and cell cycle stage were evaluated based on single-cell RNA sequencing data. KDM4B was expressed at higher levels in tumour tissues than in the adjacent normal tissues. High levels of KDM4B are associated with worse pathological features and poorer prognosis. KDM4B also promotes cell proliferation and migration in vitro, as well as tumour growth and metastasis in vivo. Tumour cells with high KDM4B expression exhibited higher CNV levels and a greater proportion of cells in the G1/S transition phase. Our results confirm that KDM4B promotes the progression of clear cell renal carcinoma, is correlated with poor prognosis, and may be related to high levels of CNV and cell cycle progression

    Lactic Acid Metabolism and Transporter Related Three Genes Predict the Prognosis of Patients with Clear Cell Renal Cell Carcinoma

    No full text
    Lactic acid was previously considered a waste product of glycolysis, and has now become a key metabolite for cancer development, maintenance and metastasis. So far, numerous studies have confirmed that tumor lactic acid levels are associated with increased metastasis, tumor recurrence and poor prognosis. However, the prognostic value of lactic acid metabolism and transporter related genes in patients with clear cell renal cell carcinoma has not been explored. We selected lactic acid metabolism and transporter related twenty-one genes for LASSO cox regression analysis in the E-MTAB-1980 cohort, and finally screened three genes (PNKD, SLC16A8, SLC5A8) to construct a clinical prognostic model for patients with clear cell renal cell carcinoma. Based on the prognostic model we constructed, the over survival (hazard ratio = 4.117, 95% CI: 1.810&ndash;9.362, p &lt; 0.0001) of patients in the high-risk group and the low-risk group in the training set E-MTAB-1980 cohort had significant differences, and similar results (hazard ratio = 1.909, 95% CI: 1.414&ndash;2.579 p &lt; 0.0001) were also observed in the validation set TGCA cohort. Using the CIBERSORT algorithm to analyze the differences in immune cell infiltration in different risk groups, we found that dendritic cells, M1 macrophages, and CD4+ memory cells in the high-risk group were significantly lower than those in the low-risk group, while Treg cells were higher than in the low-risk group. Finally, through gene enrichment analysis, we found that the signal pathway that is strongly related to the prognostic model is the cell cycle

    Lactic Acid Metabolism and Transporter Related Three Genes Predict the Prognosis of Patients with Clear Cell Renal Cell Carcinoma

    No full text
    Lactic acid was previously considered a waste product of glycolysis, and has now become a key metabolite for cancer development, maintenance and metastasis. So far, numerous studies have confirmed that tumor lactic acid levels are associated with increased metastasis, tumor recurrence and poor prognosis. However, the prognostic value of lactic acid metabolism and transporter related genes in patients with clear cell renal cell carcinoma has not been explored. We selected lactic acid metabolism and transporter related twenty-one genes for LASSO cox regression analysis in the E-MTAB-1980 cohort, and finally screened three genes (PNKD, SLC16A8, SLC5A8) to construct a clinical prognostic model for patients with clear cell renal cell carcinoma. Based on the prognostic model we constructed, the over survival (hazard ratio = 4.117, 95% CI: 1.810–9.362, p p + memory cells in the high-risk group were significantly lower than those in the low-risk group, while Treg cells were higher than in the low-risk group. Finally, through gene enrichment analysis, we found that the signal pathway that is strongly related to the prognostic model is the cell cycle
    corecore